As presented on April 28th, 2022.
Session Description
In an ideal world, the proliferation of social networking platforms and online news would mean more access to quality information and discourse for the general public. While access to content has undeniably increased, so has mis/disinformation and coordinated manipulations by humans and automated systems alike. How can we detect, examine, and learn from these phenomena, and how do we combat disinformation? What is the role of automated systems in the moderation and detection of disinformation?
Join us for a talk on the intersection of machine learning and mis/disinformation. Liz McQuillan will lead a discussion on current and future applications of ML methods to disinformation detection and natural language understanding, including emerging trends and how they may shape the world of technology and information tomorrow.
Attanasio, G., Nozza, D., Hovy, D., Baralis, E., 2022. Entropy-based Attention Regularization Frees Unintended Bias Mitigation from Lists: https://arxiv.org/abs/2203.09192
Barash, V., Fink, C., Cameron, C., Schmidt, A., Dong, W., Macy, M., Kelly, J., Deshpande, A., 2020. A Twitter Social Contagion Monitor: https://ieeexplore.ieee.org/document/9381313/
Borkan, D., Lucas Dixon, L., Sorensen, J., Thain, N., Vasserman, L., 2019. Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification: https://dl.acm.org/doi/10.1145/3308560.3317593
Chengjin, X., Nayyeri, M., Alkhoury, F., Shariat Yazdi, H., Lehmann, J., 2020. TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation: https://aclanthology.org/2020.coling-main.139/
Conroy, N.K., Rubin, V.L., Chen, Y., 2016. Automatic deception detection: Methods for finding fake news: https://asistdl.onlinelibrary.wiley.com/doi/10.1002/pra2.2015.145052010082
Francois, C., 2019. Actors, Behaviors, Content: A Disinformation ABC: Highlighting Three Vectors of Viral Deception to Guide Industry & Regulatory Responses: https://science.house.gov/imo/media/doc/Francois%20Addendum%20to%20Testimony%20-%20ABC_Framework_2019_Sept_2019.pdf
Han, Y., Silva, A., Luo, L., Karunasekera, S., Leckie, C., 2021. Knowledge Enhanced Multi-modal Fake News Detection : https://arxiv.org/pdf/2108.04418.pdf
Hardalov, M., Arora, A., Nakov, P., Augenstein, I., 2021. A Survey on Stance Detection for Mis- and Disinformation Identification: https://arxiv.org/pdf/2103.00242.pdf
Koloski, B., Stepišnik Perdih, T., Robnik-Šikonja, M., Pollak, S., Škrlj, B., 2022. Knowledge graph informed fake news classification via heterogeneous representation ensembles: https://www.sciencedirect.com/science/article/pii/S0925231222001199
Liu, Q., Jiang, H., Ling, Z., Zhu, X., Wei, S., Hu, Y., 2016. Commonsense Knowledge Enhanced Embeddings for Solving Pronoun Disambiguation Problems in Winograd Schema Challenge: https://arxiv.org/abs/1611.04146
Shu, K., Sliva, A., Wang, S., Tang, J. and Liu, H., 2017. Fake News Detection on Social Media: A Data Mining Perspective. ACM SIGKDD Explorations Newsletter, 19(1), pp.22-36.: https://arxiv.org/pdf/1708.01967.pdf
Sinoara, R., Camacho Collados, J., Rossi, R., Navigli, R. and Rezende, S., 2019. Knowledge-enhanced document embeddings for text classification.: https://orca.cardiff.ac.uk/130670/1/_Knowledge_enhanced_document_embeddings_for_text_classification.pdf
Thorne, J., Vlachos, A., Cocarascu, O., Christodoulopoulos, C., and Mittal, A., 2018. The Fact Extraction and VERification (FEVER) Shared Task : https://arxiv.org/pdf/1811.10971.pdf
Trokhymovych, M. & Saez-Trumper, D., 2021. WikiCheck: An End-to-end Open Source Automatic Fact-Checking API based on Wikipedia: https://dl.acm.org/doi/10.1145/3459637.3481961
Wardle, C. & Derakhshan, H., 2017. INFORMATION DISORDER : Toward an interdisciplinary framework for research and policy making: https://rm.coe.int/information-disorder-report-version-august-2018/16808c9c77
Wu, L., Rao, Y., Jin, H., Nazir, A., Sun, L., 2019. Different Absorption from the Same Sharing: Sifted Multi-task Learning for Fake News Detection: https://aclanthology.org/D19-1471.pdf
Zhang, C., Gupta, A., Kauten, C., Deokar, A.V., Qin, X., 2019, Detecting fake news for reducing misinformation risks using analytics approaches: https://www.sciencedirect.com/science/article/abs/pii/S0377221719304977?via%3Dihub