Machine Learning and Disinformation:
Applications, Advances, and Limitations

As presented on April 28th, 2022.

Session Description

In an ideal world, the proliferation of social networking platforms and online news would mean more access to quality information and discourse for the general public. While access to content has undeniably increased, so has mis/disinformation and coordinated manipulations by humans and automated systems alike. How can we detect, examine, and learn from these phenomena, and how do we combat disinformation? What is the role of automated systems in the moderation and detection of disinformation?

Join us for a talk on the intersection of machine learning and mis/disinformation. Liz McQuillan will lead a discussion on current and future applications of ML methods to disinformation detection and natural language understanding, including emerging trends and how they may shape the world of technology and information tomorrow.

 Slides

 

References and Reading List

Attanasio, G., Nozza, D., Hovy, D., Baralis, E., 2022. Entropy-based Attention Regularization Frees Unintended Bias Mitigation from Lists: https://arxiv.org/abs/2203.09192

Barash, V., Fink, C., Cameron, C., Schmidt, A., Dong, W., Macy, M., Kelly, J., Deshpande, A., 2020. A Twitter Social Contagion Monitor: https://ieeexplore.ieee.org/document/9381313/

Borkan, D., Lucas Dixon, L., Sorensen, J., Thain, N., Vasserman, L., 2019. Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification: https://dl.acm.org/doi/10.1145/3308560.3317593

Chengjin, X., Nayyeri, M., Alkhoury, F., Shariat Yazdi, H., Lehmann, J., 2020. TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation: https://aclanthology.org/2020.coling-main.139/

Conroy, N.K., Rubin, V.L., Chen, Y., 2016. Automatic deception detection: Methods for finding fake news: https://asistdl.onlinelibrary.wiley.com/doi/10.1002/pra2.2015.145052010082

Francois, C., 2019. Actors, Behaviors, Content: A Disinformation ABC: Highlighting Three Vectors of Viral Deception to Guide Industry & Regulatory Responses: https://science.house.gov/imo/media/doc/Francois%20Addendum%20to%20Testimony%20-%20ABC_Framework_2019_Sept_2019.pdf

Han, Y., Silva, A., Luo, L., Karunasekera, S., Leckie, C., 2021. Knowledge Enhanced Multi-modal Fake News Detection : https://arxiv.org/pdf/2108.04418.pdf

Hardalov, M., Arora, A., Nakov, P., Augenstein, I., 2021. A Survey on Stance Detection for Mis- and Disinformation Identification: https://arxiv.org/pdf/2103.00242.pdf

Koloski, B., Stepišnik Perdih, T., Robnik-Šikonja, M., Pollak, S., Škrlj, B., 2022. Knowledge graph informed fake news classification via heterogeneous representation ensembles: https://www.sciencedirect.com/science/article/pii/S0925231222001199

Liu, Q., Jiang, H., Ling, Z., Zhu, X., Wei, S., Hu, Y., 2016. Commonsense Knowledge Enhanced Embeddings for Solving Pronoun Disambiguation Problems in Winograd Schema Challenge: https://arxiv.org/abs/1611.04146

Shu, K., Sliva, A., Wang, S., Tang, J. and Liu, H., 2017. Fake News Detection on Social Media: A Data Mining Perspective. ACM SIGKDD Explorations Newsletter, 19(1), pp.22-36.: https://arxiv.org/pdf/1708.01967.pdf

Sinoara, R., Camacho Collados, J., Rossi, R., Navigli, R. and Rezende, S., 2019. Knowledge-enhanced document embeddings for text classification.: https://orca.cardiff.ac.uk/130670/1/_Knowledge_enhanced_document_embeddings_for_text_classification.pdf

Thorne, J., Vlachos, A., Cocarascu, O., Christodoulopoulos, C., and Mittal, A., 2018. The Fact Extraction and VERification (FEVER) Shared Task : https://arxiv.org/pdf/1811.10971.pdf

Trokhymovych, M. & Saez-Trumper, D., 2021. WikiCheck: An End-to-end Open Source Automatic Fact-Checking API based on Wikipedia: https://dl.acm.org/doi/10.1145/3459637.3481961

Wardle, C. & Derakhshan, H., 2017. INFORMATION DISORDER : Toward an interdisciplinary framework for research and policy making: https://rm.coe.int/information-disorder-report-version-august-2018/16808c9c77

Wu, L., Rao, Y., Jin, H., Nazir, A., Sun, L., 2019. Different Absorption from the Same Sharing: Sifted Multi-task Learning for Fake News Detection: https://aclanthology.org/D19-1471.pdf

Zhang, C., Gupta, A., Kauten, C., Deokar, A.V., Qin, X., 2019, Detecting fake news for reducing misinformation risks using analytics approaches: https://www.sciencedirect.com/science/article/abs/pii/S0377221719304977?via%3Dihub